a | b | p | s |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 |
\(s = a \oplus b\)
\(s = (a \,\&\,\overline{b}) \vee(\overline{a} \,\&\,b)\)
\(s = (a \,\&\,\overline{b}) \vee(\overline{a} \,\&\,b)\)
\(s = (a | (b|b)) | ((a|a) | b)\)
\((x|(x|y)) = \overline{x} \vee(x\,\&\,y) = \overline{x} \vee y = (x|(y|y))\)
\(s = (a | (a|b)) | ((a|b) | b)\)
\(p = a \,\&\,b\)
\(p = (a|b)|(a|b)\)
\(a_i\) | \(b_i\) | \(p_i\) | \(p_{i+1}\) | \(s_i\) |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
Можно получить, соединив два полусумматора
R | S | Q |
---|---|---|
0 | 0 | Q |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 🕱 |
R | S | Q |
---|---|---|
0 | 0 | 🕱 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | Q |
E | D | Q |
---|---|---|
0 | 0 | Q |
0 | 1 | Q |
1 | 0 | 0 |
1 | 1 | 1 |
E | J | K | Q |
---|---|---|---|
0 | 0 | 0 | Q |
0 | 0 | 1 | Q |
0 | 1 | 0 | Q |
0 | 1 | 1 | Q |
1 | 0 | 0 | Q |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | Q |
S | A | B | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
\(Z = (A \,\&\,\overline{S}) \vee(B \,\&\,S)\)
\(Z = (A | (S|S)) | (B | S)\)
S | X | A | B |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 |
\(A = X\,\&\,\overline{S}\)
\(B = X\,\&\,S\)
\(A = (X|(S|S))|(X|(S|S))\)
\(B = (X|S)|(X|S)\)
\(A = (X|(X|S))|(X|(X|S))\)
\(B = (X|S)|(X|S)\)